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The cobalt-based spinel structure oxides with synergistic effect of magnetic loss and dielectric loss have
important applications in electromagnetic wave absorption. And the excess 0.5 oxygen atoms in MnCo2045
provide more vacancies than traditional MnCo204 spinel structure and improve the electrical conductivity. In the
current study, MnCo204 5 microsphere clusters, MnCo204 5 microcubic spheres and MnCo204 5 flowery spheres
were prepared by solvothermal method and annealing process. Among the final samples with different mor-
phologies, MnCo204 5 microcubic spheres showed outstanding microwave absorption capabilities, with a mini-
mum reflection loss (RLyy) of -51.52 dB at 2.2 mm. When the thickness was further increased to 2.3 mm, the
effective absorption bandwidth could be as wide as 5.36 GHz, covering most of the X-band. The excellent ab-
sorption performance of electromagnetic waves is related to the modulability of the complex dielectric param-
eters, the optimization of impedance matching, and the enhancement of the polarization relaxation process
through the improvement of the morphologies. This work provides guidance and support for refining the elec-
tromagnetic wave absorption potential of cobalt-based spinel oxides and for designing highly efficient electro-

magnetic wave absorbers in the X-band.

1. Introduction

There is increasing concern that electromagnetic wave (EMW) have
caused harm to human life and machine operation in society nowadays.
The upgrading of electronic products sought after by most young people,
leading to that the EMW pollution is also gaining [1-3]. Developing
efficient absorbing materials to reduce electromagnetic radiation
pollution is of significance, thus EMW absorption have become a hot
spot for researchers [4-7].

AB,04 spinel material is researched widely due to its high magnetism
and excellent electronic properties, and is an ideal material for exploring
the field of EMW absoption. The crystal lattice of spinel is a face-
centered cubic tightly packed, AB,04, type belongs to the cubic crystal
system [8-13]. A and B represent divalent and trivalent metal cations, in
tetrahedral and octahedral interstitial spaces in the crystal lattice. And
they can be replaced by other elements in different oxidation states,

forming structural defects. Thus far, plenty of EMW absorbers which
have the same strutures with ACo,04 (A=Co, Zn, Mn et al.) have been
made and it got excellent marks. Recently investigators have examined
the effects of absorption performance based on ACo504. By changing the
calcination temperature, Wang et al. investigated to illuminate the
ZnCo504 has the minimum reflection loss (RLy) of —43.61 dB at 2.4
mm, and the effective absorption bandwidth (EAB) is 7.12 GHz at 2.8
mm [14-17]. This research seek to examine the effect of conductivity
loss and multiple reflection due to the different microstrutures in EMW
absorption. Zhou et al. put forward that the RLp;, of NiCoy04 is —44.5
dB at 5.3 mm, and the its EAB is calculated as 4.48 GHz at 5.1 mm. After
that, they prepared NiCoyx4 (X=S, Se, Te) successfully. Among these
metal oxide materials, the cobalt spinel structure oxides had been
researched deeply, which are outstanding EMW absorbers due to their
low price and high electrical conductivity. However, MnCo204 5 with
unique surface structure has rarely been reported as a study of
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microwave absorbing materials. Li et al. found that MnCo04 and
MnCo0504.5/CooNiO4 had the RLy,;, of —43 dB and —40.01 dB at 2.4 mm
and 2.00 mm, respectively. By changing the corresponding solvents and
hydrothermal temperatures/time, the microstrutures of MnCo204 5 can
be changed, and the competence in EMW absorption of the materials can
be effectively improved [18-23]. Furthermore, the additional oxygen
elemets in MnCo,04 5 creates vacant void than traditional spinel struc-
tures of AB204 and helps to improve electrical conductivity. This work
provides guidance and support for refining the EMW absorption po-
tential of cobalt-based spinel oxides and for designing highly efficient
EMW absorbers in the X-band. Thus MnCo5045 nanomaterials had
become proposal materials in the field of EMW absorption.

The different morphologies of the same material will produce various
effects in the aspect of EMW absorption [24-26]. NiCo204 with multiple
morphologies is researched widely for absorbing EMW. Li et al. propi-
tiously manufactured NiCo204 with distictive morphologies by trans-
forming dissolvants and medicines during the experinences. The
bayberry-like NiCoy04 obtains an RLpj, value of —39 dB and its
absorbing bandwidth is 3.1 GHz in 2.5 mm [27]. The RLp;, of needle
array clusters NiCop04 is —45 dB. The urchin-like NiCoy04 with
dielectric loss ability has a RLp;, value of —40 dB at 1.4 mm, and its EAB
is 4 GHz [28]. The sheet-like NiCo204 and hollow spheres like NiCo204
have the RLy,j, of —41.5dB and 31.1 dB [29,30]; At 2.2 mm, the RL;, of
wood-texture-column like NiCo04 is —49.73 dB, while the outstanding
EAB is 7.10 GHz [31,32]. With the increasing of eddy current loss,
interface and dipole polarization due to the morphologies change, the
absorption capacity of EMW has been greatly enhanced [33]. This
research signed that different morphologies of the same material will
effect the ability to absorb EMW.

In the current study, MnCo04 5 microsphere clusters, MnCo204 5
microcubic spheres and MnCo204 5 flowery spheres were prepared by
one-step hydrothermal and annealing process. MnCo204 5 with different
morphologies can be obtained by selecting different organic solutions,
different hydrothermal temperatures and time, and their EMW absorp-
tion mechanism is explored. MnCo204 5 microcubic sphreres exhibited
an terrific EAB of 5.36 GHz at 2.3 mm and a RLy;, of —51.52 dB at 2.2
mm that covering most of the X-band. The change of the morphologies
leads to the tunability of the parameters of the composite medium, the
improvement of impedance matching and the enhancement of the po-
larization relaxation process, thus improving the performance in EMW
absorption. The absorption of the material changes. In the field of EMW
absorption, there are relatively few studies on MnCo204 5. Therefore,
this work provides a convenient way for the application of morphology-
controlled materials in EMW absorption, and provides an idea for effi-
cient X-band microwave absorption of composite materials based on
MnCo,04 5 nanomaterials.

2. Experimental section
2.1. Materials

Manganese (II) acetate tetrahydrate (Mn(AC),-4H20),cobalt (II) ac-
etate tetrahydrate (Co(AC)y-4H20), cobalt nitrate (Co(NOs)3), urea
(CH4N20) and polyvinylpyrrolidone (PVP-K30) were obtained from
Sinopharm Reagent Co., Ltd. Ethylene glycol((CH20H),), ethyl alcohol
(C2Hs0H), glycerol (C3HgO3) were purchased from Shanghai Macklin
Biochemical Co., Ltd. All reagents were analytically pure and could be
used directly without further purification.

2.2. Preparation of MnCo204 5 microsphere clusters

Firstly, 1 mmol of Mn(Ac),-4H50, 2 mmol of Co(NOs); and 20 mmol
of urea were dissolved in 30 mL of anhydrous ethanol by ultrasonic
processing. Next, the mixed solution was transferred to an autoclave for
reaction at 160 °C for 18 h. The precursor was obtained by centrifuga-
tion. Finally, after drying at 60 °C for 10 h, the precursor was calcined in
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the air at 350 °C for 4 h to get the final sample. The MnCo0504 5 micro-
sphere clusters we prepared were marked as MCO-MCs.

2.3. Preparation of MnCo204 5 microcubic spheres

In the beginning, 1 mmol of Mn(Ac)2-4H50, and 2 mmol of Co
(Ac)2-H20 and appropriate amount of PVP-K30 were dissolved in 80 mL
glycol. Then, the mixed solution was transferred to an autoclave for
reaction at 220 °C for 24 h. The precursor was made by centrifugation.
Eventually, after drying at 60 °C for 10 h, the precursor was calcined in
the air at 500 °C for 4 h to get the oxide. The MnCo0204 5 microsphere
clusters we prepared were marked as MCO-MSs.

2.4. Preparation of MnCo204 5 flowery spheres

First of all, 1 mmol of Mn(Ac)3-4H20, 2 mmol of Co(Ac)y-H20 and
appropriate amount of PVP-K30 were put in 80 mL glycol by being
stirred for 2 h. Secondly, the mixture was shifted to an autoclave for
reaction at 220 °C for 24 h. The precursor was made by centrifugation. In
the end, after drying at 60 °C for 10 h, the precursor was calcined in the
air at 500 °C for 4 h. The MnCo,04 5 microsphere clusters we prepared
were marked as MCO-FSs.

2.5. Characterization

The X-ray diffraction pattern of the samples was analyzed by powder
X-ray diffractometer with Cu-Ka as radiation source (A =0.15418 nm).
The morphologies and elemental mapping of the samples were observed
with a field emission scanning electron microscope (SEM, JEOL JSM-
7800F), and the lattice spacing of the samples was observed with a
transmission electron microscope (TEM, JEOL JEM-2100). The chemical
composition was recorded by X-ray photoelectron spectroscopy (XPS,
Thermo Escalab 250XI) and Fourier transform infrared spectroscopy
(FT-IR, Nicolet iS50).

2.6. Electromagnetic parameters

The prepared sample powder was uniformly mixed with paraffin wax
(the mass ratio of sample powder to paraffin wax was 1:1). Through a
cylindrical mold with outer diameter of 7 mm and inner diameter of
3.04 mm, the mixed sample was pressed into a ring-shaped sample with
a thickness of about 2 mm. The electromagnetic parameters complex
permittivity e(e;=¢’-je") and complex permeability u(u=u’-ju") were
measured by coaxial method on a vector network analyzer (VNA, Agi-
lentN5222A) [34]. The frequency range is 2-18 GHz. The RLp;, value
can be calculated according to the transmission line theory, through the
following formula [35]:

/ 2nfd
Zin =12y %tanh <]”Tf VEH, ) (€8]
Zin —Zy
RL(db) = 20log—— 2
( ) OgZin + ZO ( )

where Z;; and Zy represent the input impedance of the standard
absorbing material and the characteristic impedance of free space,
respectively, f represents the frequency of the EMW, d represents the
thickness of the sample, and c represents the speed of the EMW in free
space [36].

3. Results and discussion

Experimental procedures of MnCo,04 5 spinel crystal structure with
different morphologies is shown in Fig. 1. MnCo204 5 can be successfully
prepared by hydrothermal reaction of manganese and cobalt salts as
precursors and subsequent calcination process. Notably, the modulation
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Fig. 1. Schematic diagram of the preparation of three samples.

of the nanostructure of the MnCo204 5 spinel material can be achieved
by simply modifying the type of solvent and changing the hydrothermal
reaction conditions to produce three different morphologies of micro-
sphere clusters, microcubic spheres, and flower-like spheres.

The crystal structures of the three morphologies of MnCo204 5 were
analyzed by XRD. In Fig. 2a, the peaks at 20 =19.00°, 31.26°, 36.82°,
38.51°, 44.83°, 55.77°, 59.47°, 65.34°in correspondence with (111),
(220), (311), (222), (400), (422), (511), and (440) crystal planes of
MnCo2045 (PDF#32-0297). In addition, we compared the prepared
XRD patterns of MCO-MSs with the data of MnCo204 (PDF#32-1237)
and it can be seen that there are obvious differences. No other charac-
teristic peaks such as MnCo204 or many types of other manganese oxides
were found in the XRD curves, demonstrating unadulterated MnCo204 5
samples were obtained after calcination in air [37-39]. The FT-IR
spectra in Fig. 2b showed the peaks at 552 em ! and 654 cm ™! belong
to the Co-C stretching modes derived from interaction of metal bonds
[40]. In addition, the peaks near 1618 em™t, 2980 cm ! and 3409 cm ™!
were caused by the C-H, C=0 and H-O vibration [41]. The data of FT-IR

spectrum indicated the preparation of morphology-controlled
MnC0204,5,

The element valence state of MCO-MSs was estimated by X-ray
photoelectron spectroscopy characterization. The full spectrum (Fig. 2c)
shows that there are Mn, Co and O elements in MCO-MSs. In Fig. 2b, the
characteristic peaks of Co 2p; /5 and Co 2p3/, are 794.61 and 779.23 eV,
the peaks of 783.65 and 796.71 eV belong to Co?", and the peaks of
780.30 and 794.91 eV belong to Co®*. In addition, the peaks of Mn 2p3/5
and Mn 2p; o correspond to 642.41 and 652.17 eV [42,43]. It could
obtain that the peak at 641.22 eV is attributed to Mn*, and the peaks at
641.22 and 653.70 eV due to Mn>" by analyzing the data (Fig. 2¢). From
Fig. 2f, the O 1 s spectrum shows peaks at 528.7 eV, 530.9 eV, and 531.5
eV, which included the different oxygens in the A-O (A=Mn, Co) metal
bond, in hydroxyl groups, and in H,O absorbed by MCO-MSs, respec-
tively.[44] Above all, the XPS data bore out that Co?*, Co®*, Mn?*, and
Mn>* appeared at the same time in MCO-MSs, and it substantiated the
successful preparation of MnCo,045 mirocubic spheres one-step hy-
drothermal and annealing process.

Fig. 2. (a) XRD patterns and (b) FT-IR pattern of all samples; XPS spectra of (c) survey spectrum for all samples, (d) O 1 s, (e) Mn 2p, (f) Co 2p for MCO-MSs.
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In order to compare the morphological differences of MnCo204.5
with different structures, scanning electron microscope imaging was
carried out. From Fig. 3a—c, it is found that, MCO-MSs are formed by a
large number of small cubes, MCO-MCs has a solid spherical structure
with cluster aggregation, MCO-FSs has a flower structure. As can be seen
from Fig. 2bl and cl, the dimensions of MCO-MSs and MCO-FSs are
about 1 pm. The size of MCO-MCs is much smaller than the other two
samples. The above results show that different solvents, hydrothermal
time and temperature have profound effects on the microstructure of
samples, in which the change of morphologies has a crucial effect,
leading to the difference in the capacity of EMW absorption. The
Fig. 3d-f shows the corresponding element distribution of Co, Mn and O
in the MCO-MSs. As shown in Fig. 3d-f, the morphology of MCO-MSs
was analyzed by TEM and HRTEM characterization [45]. From Fig.3d,
it showed that MCO-MSs has a solid construction, distinctly different
from the cobalt spinel structure oxides with hollow structure like
ZnCoy04 which was prepared before. The ED ring is composed of
dispersive points [46]. The TEM image showed shows various lattice
fringes in diverse directions. The TEM image of MCO-MSs in the figure
shows a face spacing of 0.235 nm and 0.164 nm due to the (222) and
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(422) crystal faces of MCO-MSs [47]. The diffraction rings of the
MCO-MSs (222), (422), and (511) crystal faces can be clearly seen in
Fig. 3f. The results of HRTEM and SAED analysis further prove the
successful preparation of MnCo204 s.

The capacities in EMW absorbing of paraffin coatings when the
micromatials were used as fillers were investigated by using paraffin as
the substrate and preparing each sample powder as a circular sample
[48]. Firstly, the complex permittivity (e, = &’-j¢") and complex
permeability (4 = p’-ju") of the materials were recorded by a vector
network analyzer, which is significant for making sure the EMW ab-
sorption properties of the absorbers [49]. To our knowledge, the real (¢’)
and imaginary (¢") parts of the complex permittivity constants point to
the storage and loss capacities of electrical energy, and the real (z") and
imaginary (u") parts of the complex permeability are represented as the
storage and dissipation capacities of magnetic energy [50].

The complex permittivity parameter and dielectric loss factor (tané,)
of MCO with multiple morphology are shown in Fig. 4a—c, and it can be
observed that there is a significant difference in the dielectric perfor-
mance of MCO spinel materials with different structures [51]. It is worth
noting that there is a significant fluctuation in the 9-14 GHz range for

Fig. 3. The SEM images of (a-al) MCO-MCs, (b-b1) MCO-MSs, (c-c1) MCO-FSs, (e-i) the element mapping images of MCO-MSs. The (d) TEM images, (e) selected

electron diffraction images and (f) the element mapping images of MCO-MSs.
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Fig. 4. Electromagnetic parameters. (a) Real part, (b) imaginary part, (c) tangent of permittivity, (d) Real part, (e) imaginary part, (f) tangent of permeability of

each sample.

MCO-MSs compared to MCO-MCs and MCO-FSs, which may be caused
by their polarization relaxation process in this region. The complex
permeability parameter and the magnetic loss factor (tans,) of all sam-
ples are shown in Fig. 4d-. It indicates clearly the complex permeability
parameter of each sample is low compared to the level and dielectric
properties of the tang, curve [52].

From the average values of tand, and tand, (Fig. 5a), it presents
evidently that the dielectric loss capability of the various samples far
exceeds the magnetic loss level, which suggests that the dielectric loss
dominates in this work as the main EMW loss mechanism [53]. In

general, the Cp curve is available for investigating the magnetic loss
mechanism of the absorbers. The expression is as below [54]:

Co=p"(u) " ®3)
As can be seen in Fig. 5b, each spinel sample, especially the MCO-
MCs, has volatility in 4-8 GHz, which indicates the existence of natu-
ral resonance [55]. Furthermore, the Cy of each sample shows almost no
fluctuation in 8-18 GHz, it signifies eddy current losses dominate during
this region [56].
The attenuation constant («) is a combination of the dielectric/

Fig. 5. Average tangent (a) of the permittivity and permeability, Cy (b), attenuation constant (c) and Cole-Cole diagram (d—f) of each sample.
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magnetic performance of a material’s ability to attenuate EMW, and is
an important factor to keep in mind when designing materials which
have fantastic abilities in EMW absorption. The equation is derived as
follows [57,58]:

a= @ \/ (u'e” —pe) + \/ ('€ = pe) + (We" +p"e)’ “

On the whole, among the three samples with different morphologies
of MCO spinel structures, the highest level of EMW attenuation is
observed for MCO-MCs, followed by MCO-MSs and MCO-FSs [59,60].
The a (Fig. 5¢) and tand, (Figs. 4c and 5b) of each sample show a similar
trend, which further demonstrates that the dielectric loss prevails in
theory. More significantly, it proves the rationality of the modulation of
dielectric properties and loss mechanisms through structural design [61,
62].

For revealing the dielectric loss mechanism, we adopt the Debye
principle to illustrate the polarization relaxation behavior with the
following equations [63,64]:

€=s——+ee ®

. 0T(E — €)

1+ (2nf)*r ©

The ¢, and & 7 and f are symbols of the optical permittivity and
static permittivity, polarization relaxation time and frequency [65,66].
The Cole-Cole equation can be formulated as below [67,68]:

(¢ - 525) g ey = (255 %

According to Eq. (7), if a polarization relaxation process survives in
the material, the graphs plotted by ¢" and ¢’ would appear as semi-
circular arcs, with each arc is a symbol of a Debye relaxation process [69,
70]. Compared with MCO-MCs, Cole-Cole images of MCO-MSs and
MCO-FSs show an obvious semicircular shape (Fig. 5d-f), indicating that
there is an obvious polarization relaxation process between the two. This
can be explained by the strong interfacial polarization between the
material and the free space due to its unique topography. The above
results strongly reveal that the introduction of polarization relaxation
process through structural engineering strategy, which in turn subserves
the raise of the dielectric properties of the materials [71,72].

According to the previous researches, the preparation of the EMW
absorber need to think of the impedance matching performance of the
nanomaterials in addition to the requirement of attenuation ability [73].
The impedance matching performance indicates the accessibility of the
EMW to the inside of the nanomaterials and is an essential bussiness for
the attenuation ability to work. The formula for deriving the measured
value Z is as follows [74]:

zZ= ﬁ = \/Etanh (]@ de,y,) (8)
Z(] & c
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The Z value is related to the thickness (d) and frequency (f), and as
the Z value approaches 1, the EMW inclines to travel inside the material
without reflection, signifing that an impedance match has been attained
[75]. Fig. 6 shows the impedance matching plot for MCO-MCs,
MCO-MSs, and MCO-FSs. The yellow area between Z = 0.8 and Z =
1.2 is circled in black, with the circled area representing a higher degree
of impedance match. Notably, the MCO-MCs with the strongest dielec-
tric performance have the poorest impedance matching performance.
According to previous research, the ability of EMW to enter a material is
related to the material’s impedance matching, which is related to the
material’s structure and dielectric parameters. High dielectric parame-
ters can lead to impedance mismatch, resulting in more EMW being
reflected than entering the material. Therefore, MCO-FSs exhibits better
impedance matching performance than MCO-FCs, which makes it have
better EMW absorption performance. The impedance matching perfor-
mance of all samples showed an opposite trend to the permittivity
parameter, which can be put down to the impedance mismatch phe-
nomenon caused when the permittivity parameter is too high. Based on
the above conclusions, the combination of excellent EMW attenuation
ability and splendid impedance matching will give the MCO-MSs the
awesome capacity in EMW absorption.

In light with the line transmission theories, RL and EAB are counted
in the light of Egs. (1) and (2), so that capacities in EMW absorption of
the material can be assessed more intuitively. On account of the calcu-
lation results, the absorption of incident EMW will achieve 90 % when
RL<—10 dB. As aresult, in the 2D and 3D RL diagrams (Fig. 7), the area
with RL<—10 dB is marked with a black line, which is the region of EAB.
Combining the fantastic attenuation capability and good impedance
matching of MCO-MSs, it revealed the lowest RLy, in theory and the
excellent EABax (—51.52 dB for RLyi, at 2.2 mm, and 5.36 GHz for
EABpax at 2.3 mm) at a thin thickness [76]. In addition, in order to gain
more insight into the EMW absrption behavior of MCO spinel materials,
we use the quarter-wavelength matching theory to explore the rela-
tionship between the matching thickness and the RL,;, and frequency.
The formula is as described below [77]:

; _ni nc (=1
oA kel

Where t,, is the matching thickness, c is the velocity of the EMW in
vacuum, fi, is the matching frequency, and |&| and |y,| are the moduli of
erand p, [78].

If the phase difference between the reflected and absorbed waves
reaches 180°, then t; and f;, satisfy the above equation and the two
waves cancel each other out. More importantly, the RLp;, of the nano-
materials is going to achieve the minimum value, i.e., RLpin [79]. Ac-
cording to Fig. 8, with the increase of the thickness, the RLp;, is
gradually transformed to the low frequency. The experimental conse-
quence are consistent with the simulation leads to t,,-f;; curves and also
confirm that the quarter-wavelength matching model could accurately
describe the abilities in EMW absorption.

Dielectric loss and magnetic loss are the main ways for absorber to

3,5.....) ©

Fig. 6. The normalized input impendence Z of (a) MCO-MCs, (b) MCO-MSs and (c) MCO-FSs.
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Fig. 7. The 2D (a-c) and 3D (d-f) RL of MCO-MCs, MCO-MSs and MCO-FSs.

Fig. 8. Correlation diagram of (a) MCO-MCs, (b) MCO-MSs, (¢) MCO-FSs RLy, value and |Z;,/Zo| under /4 matching thickness.

attenuate EMW. Dielectric loss is usually determined by conduction loss,
interface polarization, and multiple scattering. Polarization relaxation is
mainly caused by dipole and interface polarization. Dipoles are gener-
ated at the positions of functional groups, defects, and interfaces. Under
high frequency alternating electric field, when the dipole rotation can
not follow the change of the electric field, the dipole directional polar-
ization loss will occur, which is the key role of dielectric loss [80,81].
The fantastic capacities in EMW absorption of the MCO-MSs due to the
syneries of impedance matching and dielectric/magnetic loss theories
(Fig. 9). Based on the former analyzing information of the permeability
parameters, the magnetic properties of MCO include magnetic reso-
nance and eddy current losses. The dielectric loss prevailed the

attenuation properties of MCO. In addition, the unique morphology of
the microcubic spheres of MCO induces stronger interfacial polarization.
In conclusion, the EMW absorption performance of MCO-MSs was fully
optimized under the combined effect of multiple mechanisms. Table 1
presents typical AB,O4 absorbers and their optimal EMW absorption
properties. It can be clearly seen that MnCoy045 are significantly
competitive compared to th Co-based electromagnetic absorbers.

4. Conclusion

Ultimately, a series of morphology-controlled MCO spinel oxides
were prepared by hydrothermal and thermal treatments in this study.
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Fig. 9. EMW absorption mechanism of MCO-MSs.

Y. Han et al.
Table 1
Comparison of EMW absorption performance with other materials.
Absorber Content RLpin Thickness EAB Refs.
(Wt%) (dB) (mm) (GHz)
MnCo,04 60 —43 2.5 4.4 (178
MnCo0,04 5@Co2NiO4 70 —40.01 2.00 6.12 [18]
MnFe,04 30 —40.4 3.0 6.8 [56]
ZnCo,04 70 -52.9 3.5 4. 48 [21]
NiCo,04 45 -39 2.5 3 [23]
NiCo,04 45 —45 4 3.5 [23]
NiCo,04 45 —40.0 1.4 6.0 [23]
C0,Si04 25 —46.7 2.9 5.92 [35]
CuFe,04 30 —48.81 4.0 4.08 [11]
S1 50 —53.91 3.1 4.48 This
work
S2 50 —51.48 2.3 5.36 This
work
S3 50 —24.31 6.4 6.48 This
work

Based on the importance of the structural design of EMW absoption
materials, three different morphologies of MCO, namely, microspheres,
microcubes and flower spheres, were successfully prepared by modu-
lating the experimental conditions. Remarkably, the MCO-MSs achieved
outstanding capabilities in EMW absorption with a RLyj, of —51.52 dB
at 2.2 mm and an EAB,x of 5.36 GHz at 2.3 mm. This strategy was used
to modulate the complex dielectric parameters of the materials through
the improvement of the morphologies and to adjust the impedance
matching, more importantly, to enhance the polarization relaxation
process. This work supplies guidance for adjusting the EMW absorption
abilities of cobalt-based spinel oxides designed highly outstanding EMW
absorbing coatings in the X-band.
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